(from: http://hostilefork.com/2010/03/14/where-the-printf-rubber-meets-the-road/)
After ignoring StackOverflow for a while, I decided to check up on it a bit lately. Someone asked a question that’s one of those kind of fundamental curiosity issues that I enjoy explaining. He said:
I always thought that functions like printf() are in the last step defined using inline assembly. That deep into stdio.h is buried some asm code that actually tells CPU what to do. Something like in dos, first mov beginning of the string to some memory location or register and than call some int. But since x64 version of Visual Studio doesn’t support inline assembler at all, it made me think that there are really no assembler-defined functions in C/C++. So, please, how is for example printf() defined in C/C++ without using assembler code? What actually executes the right software interrupt?Obviously the answer is going to depend on the implementation. Yet I thought that with the open-sourced GNU C Library, it would be pretty straightforward to show how most of it is in C but it bottoms out at
syscall
. But it really was quite a maze to connect all the dots without doing any hand-waving! So I found that my explanation just kept growing until it was so long that a blog entry was a more fitting format.So read on, fearless explorers, as we dig into the complicated answer to a seemingly simple question…
First Steps
We’ll of course start with the prototype forprintf
, which is defined in the file libc/libio/stdio.hextern int printf (__const char *__restrict __format, ...);
printf
, however. Instead, in the file /libc/stdio-common/printf.c you’ll find a little bit of code associated with a function called __printf
:int __printf (const char *format, ...) { va_list arg; int done; va_start (arg, format); done = vfprintf (stdout, format, arg); va_end (arg); return done; }
printf
:ldbl_strong_alias (__printf, printf);
printf
would be a thin layer that calls vfprintf
with stdout
. Indeed, the meat of the formatting work is done in vfprintf
, which you’ll find in libc/stdio-common/vfprintf.c. It’s quite a lengthy function, but you can see that it’s still all in C!Deeper Down the Rabbit Hole…
vfprintf
mysteriously calls outchar
and outstring
, which are weird macros defined in the same file:#define outchar(Ch) \ do \ { \ register const INT_T outc = (Ch); \ if (PUTC (outc, s) == EOF || done == INT_MAX) \ { \ done = -1; \ goto all_done; \ } \ ++done; \ } \ while (0)
PUTC
, also in the same file:#define PUTC(C, F) IO_putwc_unlocked (C, F)
IO_putwc_unlocked
in libc/libio/libio.h, you might start thinking that you no longer care how printf
works:#define _IO_putwc_unlocked(_wch, _fp) \ (_IO_BE ((_fp)->_wide_data->_IO_write_ptr \ >= (_fp)->_wide_data->_IO_write_end, 0) \ ? __woverflow (_fp, _wch) \ : (_IO_wint_t) (*(_fp)->_wide_data->_IO_write_ptr++ = (_wch)))
__woverflow
. Since the only option when you’ve run out of buffer is to flush to the screen (or whatever device your file pointer represents), we can hope to find the magic incantation there.Vtables in C?
If you guessed that we’re going to hop through another frustrating level of indirection, you’d be right. Look in libc/libio/wgenops.c and you’ll find the definition of__woverflow
:wint_t __woverflow (f, wch) _IO_FILE *f; wint_t wch; { if (f->_mode == 0) _IO_fwide (f, 1); return _IO_OVERFLOW (f, wch); }
JUMP
macro. In the file libc/libio/libioP.h you’ll find a little documentation of this technique:/* THE JUMPTABLE FUNCTIONS.
* The _IO_FILE type is used to implement the FILE type in GNU libc,
* as well as the streambuf class in GNU iostreams for C++.
* These are all the same, just used differently.
* An _IO_FILE (or FILE) object is allows followed by a pointer to
* a jump table (of pointers to functions). The pointer is accessed
* with the _IO_JUMPS macro. The jump table has a eccentric format,
* so as to be compatible with the layout of a C++ virtual function table.
* (as implemented by g++). When a pointer to a streambuf object is
* coerced to an (_IO_FILE*), then _IO_JUMPS on the result just
* happens to point to the virtual function table of the streambuf.
* Thus the _IO_JUMPS function table used for C stdio/libio does
* double duty as the virtual function table for C++ streambuf.
*
* The entries in the _IO_JUMPS function table (and hence also the
* virtual functions of a streambuf) are described below.
* The first parameter of each function entry is the _IO_FILE/streambuf
* object being acted on (i.e. the 'this' parameter).
*/
IO_OVERFLOW
in libc/libio/genops.c, we find it’s a macro which calls a “1-parameter” __overflow
method on the file pointer:#define IO_OVERFLOW(FP, CH) JUMP1 (__overflow, FP, CH)
const struct _IO_jump_t _IO_file_jumps = { JUMP_INIT_DUMMY, JUMP_INIT(finish, INTUSE(_IO_file_finish)), JUMP_INIT(overflow, INTUSE(_IO_file_overflow)), JUMP_INIT(underflow, INTUSE(_IO_file_underflow)), JUMP_INIT(uflow, INTUSE(_IO_default_uflow)), JUMP_INIT(pbackfail, INTUSE(_IO_default_pbackfail)), JUMP_INIT(xsputn, INTUSE(_IO_file_xsputn)), JUMP_INIT(xsgetn, INTUSE(_IO_file_xsgetn)), JUMP_INIT(seekoff, _IO_new_file_seekoff), JUMP_INIT(seekpos, _IO_default_seekpos), JUMP_INIT(setbuf, _IO_new_file_setbuf), JUMP_INIT(sync, _IO_new_file_sync), JUMP_INIT(doallocate, INTUSE(_IO_file_doallocate)), JUMP_INIT(read, INTUSE(_IO_file_read)), JUMP_INIT(write, _IO_new_file_write), JUMP_INIT(seek, INTUSE(_IO_file_seek)), JUMP_INIT(close, INTUSE(_IO_file_close)), JUMP_INIT(stat, INTUSE(_IO_file_stat)), JUMP_INIT(showmanyc, _IO_default_showmanyc), JUMP_INIT(imbue, _IO_default_imbue) }; libc_hidden_data_def (_IO_file_jumps)
_IO_new_file_overflow
with _IO_file_overflow
, and the former is defined in the same source file. (Note: INTUSE
is just a macro which marks functions that are for internal use, it doesn’t mean anything like “this function uses an interrupt”)Are we there yet?!
The source code for_IO_new_file_overflow
does a bunch more buffer manipulation, but it does call _IO_do_flush
:#define _IO_do_flush(_f) \ INTUSE(_IO_do_write)(_f, (_f)->_IO_write_base, \ (_f)->_IO_write_ptr-(_f)->_IO_write_base)
_IO_do_write
is probably where the rubber actually meets the road: an unbuffered, actual, direct write to an I/O device. At least we can hope! It is mapped by a macro to _IO_new_do_write
and we have this:static _IO_size_t new_do_write (fp, data, to_do) _IO_FILE *fp; const char *data; _IO_size_t to_do; { _IO_size_t count; if (fp->_flags & _IO_IS_APPENDING) /* On a system without a proper O_APPEND implementation, you would need to sys_seek(0, SEEK_END) here, but is is not needed nor desirable for Unix- or Posix-like systems. Instead, just indicate that offset (before and after) is unpredictable. */ fp->_offset = _IO_pos_BAD; else if (fp->_IO_read_end != fp->_IO_write_base) { _IO_off64_t new_pos = _IO_SYSSEEK (fp, fp->_IO_write_base - fp->_IO_read_end, 1); if (new_pos == _IO_pos_BAD) return 0; fp->_offset = new_pos; } count = _IO_SYSWRITE (fp, data, to_do); if (fp->_cur_column && count) fp->_cur_column = INTUSE(_IO_adjust_column) (fp->_cur_column - 1, data, count) + 1; _IO_setg (fp, fp->_IO_buf_base, fp->_IO_buf_base, fp->_IO_buf_base); fp->_IO_write_base = fp->_IO_write_ptr = fp->_IO_buf_base; fp->_IO_write_end = (fp->_mode <= 0 && (fp->_flags & (_IO_LINE_BUF+_IO_UNBUFFERED)) ? fp->_IO_buf_base : fp->_IO_buf_end); return count; }
_IO_SYSWRITE
is doing the work:/* The 'syswrite' hook is used to write data from an existing buffer to an external file. It generalizes the Unix write(2) function. It matches the streambuf::sys_write virtual function, which is specific to this implementation. */ typedef _IO_ssize_t (*_IO_write_t) (_IO_FILE *, const void *, _IO_ssize_t); #define _IO_SYSWRITE(FP, DATA, LEN) JUMP2 (__write, FP, DATA, LEN) #define _IO_WSYSWRITE(FP, DATA, LEN) WJUMP2 (__write, FP, DATA, LEN)
do_write
we call the write
method on the file pointer. We know from our jump table above that is mapped to _IO_new_file_write
, so what’s that do?_IO_ssize_t _IO_new_file_write (f, data, n) _IO_FILE *f; const void *data; _IO_ssize_t n; { _IO_ssize_t to_do = n; while (to_do > 0) { _IO_ssize_t count = (__builtin_expect (f->_flags2 & _IO_FLAGS2_NOTCANCEL, 0) ? write_not_cancel (f->_fileno, data, to_do) : write (f->_fileno, data, to_do)); if (count < 0) { f->_flags |= _IO_ERR_SEEN; break; } to_do -= count; data = (void *) ((char *) data + count); } n -= to_do; if (f->_offset >= 0) f->_offset += n; return n; }
write
! Well where is the implementation for that? You’ll find write
in libc/posix/unistd.h:/* Write N bytes of BUF to FD. Return the number written, or -1. This function is a cancellation point and therefore not marked with __THROW. */ extern ssize_t write (int __fd, __const void *__buf, size_t __n) __wur;
__wur
is a macro for __attribute__ ((__warn_unused_result__))
)Functions Generated From a Table
That’s only a prototype forwrite
. You won’t find a write.c file for Linux in the GNU standard library. Instead, you’ll find platform-specific methods of connecting to the OS write function in various ways, all in the libc/sysdeps/ directory.We’ll keep following along with how Linux does it. There is a file called sysdeps/unix/syscalls.list which is used to generate the
write
function automatically. The relevant data from the table is:- File name: write
- Caller: “-” (i.e. Not Applicable)
- Syscall name: write
- Args: Ci:ibn
- Strong name: __libc_write
- Weak names: __write, write
So now we’re expecting to be able to link against a function called
__libc_write
which is generated by this shell script. But what’s being generated? Some C code which implements write via a macro called SYS_ify
, which you’ll find in sysdeps/unix/sysdep.h#define SYS_ify(syscall_name) __NR_##syscall_name
__libc_write
becomes nothing more than a proxy invocation of the syscall
function with a parameter named __NR_write
, and the other arguments.Where The Sidewalk Ends…
I know this has been a fascinating journey, but now we’re at the end of GNU libc. That number__NR_write
is defined by Linux. For 32-bit X86 architectures it will get you to linux/arch/x86/include/asm/unistd_32.h:#define __NR_write 4
syscall
. Which I may do at some point, but for now I’ll just point you over to some references for how to add a system call to Linux.
No comments:
Post a Comment